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BlockSolve95 Users Manual:Scalable Library Software for theParallel Solution of Sparse Linear SystemsbyMark T. Jones and Paul E. PlassmannAbstractBlockSolve95 is a software library for solving large, sparse systems of linearequations on massively parallel computers or networks of workstations. The ma-trices must be symmetric in structure; however, the matrix nonzero values maybe either symmetric or nonsymmetric. The nonzeros must be real valued. Block-Solve95 uses a message-passing paradigm and achieves portability through the useof the MPI message-passing standard. Emphasis has been placed on achieving bothgood processor performance through the use of higher-level BLAS and scalabilitythrough the use of advanced algorithms. This report gives detailed instructions onthe use of BlockSolve95 and descriptions of a number of program examples thatcan be used as templates for application programs.
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1 IntroductionBlockSolve95 is a scalable parallel software library primarily intended for the solution of sparselinear systems that arise from physical models, especially problems involving multiple degreesof freedom at each node. For example, when the �nite element method is used to solve practicalproblems in structural engineering, each node typically has two to �ve degrees of freedom; Block-Solve95 is designed to take advantage of problems with this type of local structure. BlockSolve95is also reasonably e�cient for problems that have only one degree of freedom associated witheach node, such as the three-dimensional Poisson problem. BlockSolve95 is general purpose;we require only that the matrices be sparse and symmetric in structure (but not necessarily invalue).1BlockSolve95 has incorporated several features that allow e�cient performance on diverseparallel architectures. We summarize these features below:� Every aspect of the linear system solution|the computation of a matrix ordering, therenumbering, the computation of the preconditioner, and the iterative solution|is donein parallel.� BlockSolve95 runs on a variety of parallel architectures and can easily be ported toothers. The MPI message-passing standard [4, 13] is used to achieve portability acrossarchitectures. Machines on which BlockSolve95 has been tested include the IBM SPseries, the Cray T3D and T3E, the SGI Cray Origin2000, the HP-Convex Exemplar, theIntel Paragon, and networks of Sun, SGI, DEC alpha, and HP workstations. The bmakedirectory contains contains a complete set of the machine-dependent make�les for thearchitectures currently supported.� The software uses an e�cient implementation of the parallel coloring algorithm describedin [9] that allows for the e�cient computation of matrix orderings and the scalable per-formance of the linear solver described below.� The software is designed to solve linear systems whose sizes are the same order as thetotal amount of memory available on a parallel machine. For example, Table 1 showshow e�ectively BlockSolve95 uses the available memory on two di�erent architectures forthe high-temperature superconductor modeling application described in [8]. Note thatsome of each processor's memory is used by the operating system and program executable(e.g., approximately 4 MBytes and 1 MByte, respectively, on the Intel DELTA). For thisapplication an unpermuted version of the matrix is maintained in addition to the memoryrequired by BlockSolve95. Moreover, the memory required to store only the indices andthe double-precision values for 1:0� 108 nonzeros is 1.2 GBytes.� The software is designed to achieve scalable performance. With a constant number of un-knowns per processor, a matrix nonzero structure resulting from local graph connections(the usual case with any �nite-element mesh), and a reasonable partitioning of verticesto processors, the average processor performance is roughly constant. For example, forthe piezoelectric crystal modeling application described in [7], the average processor per-formance on the Intel DELTA varied from 4.16 MFlops to 3.83 MFlops when the numberof processors was increased from 128 to 512.� The software is designed to use Level 2 and Level 3 dense BLAS (the Basic Linear AlgebraSubroutines) to achieve e�cient use of processors on di�erent architectures. For example,Table 2 shows the average processor performances for the application described in [8].Note that a reasonable percentage of the LINPACK benchmark performance is achievedfor a sparse matrix calculation on these very di�erent processor architectures.1Whenever we use the term nonsymmetric with respect to BlockSolve95, we mean symmetric instructure and nonsymmetric in value. Thus, BlockSolve95 handles most matrices arising in �nite-element calculations; however, it cannot handle general nonsymmetric matrices.2



Table 1: E�ective use of total memory by BlockSolve95Memory per TotalNumber of Processor MemoryNumber of Matrix (Usable (UsableMachine Processors Nonzeros Memory) Memory)Intel 16 MBytes 8 GBytesDELTA 512 1:9� 108 (11 MBytes) (5.6 MBytes)IBM SP1 128 5:1� 108 128 MBytes 16 GBytesTable 2: E�cient use of di�erent processor architectures by BlockSolve95Number Avg. Proc.Processor of Performance TotalMachine Architecture Processors Achieved PerformanceIntel DELTA Intel i860 512 8.3 MFlops 4.26 GFlopsIBM SP1 RS/6000-370 128 20.5 MFlops 2.62 GFlops� The software is a general-purpose sparse solver. Hence, BlockSolve95 is e�ective alsoon problems arising from unstructured meshes. For example, a total performance of2.2 GFlops was achieved on 512 processors of the Intel DELTA for an adaptive meshcalculation using high-order shell elements in a three-dimensional geometry [10].� The software requires minimal input. You must give BlockSolve95 the matrix nonzerosand global indices of rows corresponding to the unknowns assigned to each processor andthe mapping functions to translate between global and local indexing.� BlockSolve95 is designed to be most e�ective within real application codes. In our expe-rience, most application codes must solve the same linear systems with several di�erentright-hand sides and/or solve linear systems with the same structure, but di�erent matrixvalues, multiple times. BlockSolve95 has, therefore, been designed to work well in thissituation.The remainder of this manual is organized as follows. We begin in x2 with a brief descriptionof the algorithms used in BlockSolve95. In x3, x4, and x5 we present the routines required to setup the context and matrix data structures and solve linear systems with BlockSolve95. In x6we discuss a number of details dealing with 
op counting, BLAS performance, message-passingoptions, and other issues that arise in tuning the performance of an application. The installationand availability of BlockSolve95 are discussed in x7, and in x8 we describe the program examplesthat are included with this version. Finally, in x9 we discuss related software and plans for futureversions of the code.This document is intended to be used primarily as a reference. If you are a new user, werecommend using the BlockSolve95 examples as templates for your application codes.3



2 Algorithm DescriptionsThe primary algorithmic components of BlockSolve95 are� the computation of a matrix ordering allowing for the scalable inversion of the triangularsystems arising from incomplete matrix factorizations;� the automatic extraction of clique and identical node (i-node) information from unstruc-tured systems that allows for the use of higher-level BLAS; and� the computation of incomplete sparse matrix factorizations for use as preconditioners inthe iterative solution of linear systems.The matrix-ordering algorithms are used to ensure that, for many problems, the performanceper processor remains roughly constant as the problem size and number of processors are in-creased. Computational e�ciency is obtained through the use of higher-level BLAS, e�cientmatrix storage schemes, and precomputed communication data structures. For symmetricmatrices, incomplete Cholesky factorizations may be computed; and for general matrices, in-complete LU factorizations may be obtained. These preconditioners are designed so that theirapplication is both e�cient and as scalable as possible.In addition, BlockSolve95 contains implementations of several well-known iterative meth-ods. A preconditioned conjugate gradient method can be used for symmetric, positive de�nitesystems. For symmetric inde�nite systems, the preconditioned SYMMLQ algorithm may beused.2 For nonsymmetric systems, the GMRES method may be used. In addition, the PETScsoftware package [1] contains an interface to the BlockSolve95 preconditioners; this interfacemay be used if other iterative methods are required. For basic information on iterative methods,see [2].You can select from a number of di�erent preconditioners. The �rst is a simple diagonalscaling of the matrix, which can be used by itself or in conjunction with another preconditioner.The other preconditioning options are incomplete Cholesky or LU factorization, SSOR (! = 1),and block Jacobi (where the blocks are the cliques of the graph associated with the sparsematrix). Perhaps the most generally applicable selection is the incomplete factorization withdiagonal scaling.3 The incomplete factorization is the algorithm for which BlockSolve95 wasdesigned; this approach has proved useful in a wide variety of practical problems.BlockSolve95 does not partition a matrix across the processors. Instead, BlockSolve95assumes that the given partitioning is a good one. As such, its performance may be limited bythe quality of the partitioning. We assume that the right-hand side and the solution vector arepartitioned in the same manner as the rows of the sparse matrix. See [5] for more informationon partitioning heuristics.We achieve parallelism in the conjugate gradient, SYMMLQ, and GMRES implementationsby partitioning the vectors used in these algorithms in the same manner that the rows of thematrix are partitioned across the processors. For these algorithms it is (for the most part) asimple matter of executing inner products and daxpy operations in parallel.2.1 Processor PerformanceTo achieve good performance on each node, we reorder the matrix and use a layered data struc-ture to allow the use of the higher-level dense BLAS. This reordering is particularly important2The SYMMLQ algorithm requires a positive de�nite preconditioner, and this requirement can bea serious limitation if the matrix being solved is very inde�nite. By \very inde�nite," we mean thatthe matrix has many negative and many positive eigenvalues.3Two possible exceptions to this recommendation are (1) if the matrix has no or very small cliquesand identical nodes (in which case the factorization may be very slow) and (2) if the space for theincomplete factorization is not available. 4



on machines that use high-performance RISC chips on which good performance can be achievedonly by using such operations. The reordering of the matrices is based on the identi�cation oftwo structures that commonly arise in the graph associated with the matrix nonzeros: identicalnodes and cliques.Identical nodes (i-nodes) typically exist when multiple degrees of freedom are associatedwith each vertex in the graph. Cliques are found in many graphs associated with sparse matri-ces, but cliques typically are found in graphs where multiple degrees of freedom are associatedwith each vertex and the local connectivity of the graph is large. For example, if one uses asecond-order, three-dimensional �nite element in a typical structural engineering problem (withthree degrees of freedom per vertex), clique sizes of up to 81 can be found. In general, the largerthe cliques or identical nodes, the better the performance. This technique has been used withgreat success in direct matrix factorization methods.We illustrate these structures in Figure 1 where we depict a subsection of a graph thatwould arise from a two-dimensional, bilinear, multicomponent �nite-element model with threedegrees of freedom per discretization point. We illustrate the three degrees of freedom by thethree dots at each node point; the linear, quadrilateral elements imply that the twelve degreesof freedom sharing the four node points of each face are completely connected. In the �gurewe show edges only between the nodes, these edges represent the complete interconnection ofall the vertices on each element or face.The dashed lines in the �gure represent a geometric partitioning of the grid; we assumethat the vertices in the central region are all assigned to one processor. We note that theadjacency structures of the vertices at the same geometric node (i.e., the nonzero structure ofthe associated variables) are identical. BlockSolve95 takes advantage of these so-called i-nodesby maintaining only one copy of the indexing for each set of identical rows and by storingnonzeros for these rows in a dense matrix form that can be used with the BLAS.A second data structure layer is determined by the clique structure of the graph. Recallthat a clique is a completely connected subgraph. In the upper right of Figure 1, the groupingof vertices by the dotted lines partitions the graph into cliques. BlockSolve95 associates a \su-pernode" with each clique and orders the unknowns associated with each clique consecutively.Based on this ordering, the submatrix corresponding to the unknowns in the same clique cor-responds to a dense matrix. In the sparse matrix, these dense matrices manifest themselves asdense blocks on the matrix diagonal. The BlockSolve95 data structures explicitly store thesedense blocks to allow for greater e�ciency in using the BLAS.2.2 Multicolor OrderingFollowing the graph reductions that are accomplished after the identi�cation of i-nodes andcliques in the sparse matrix structure, BlockSolve95 must construct a matrix ordering basedon the reduced graph, illustrated at the bottom of Figure 1. To achieve scalable parallelperformance in the incomplete factorization and SSOR preconditioners, BlockSolve95 colorsthe reduced graph using a parallel coloring heuristic [9]. The graph reduction and coloringphases of the computation are e�cient and typically require a small amount of time relative tothe incomplete matrix factorization routine.The advantage of using a graph coloring is that the number of colors required is essentiallya local property of the graph; thus, the number of colors is roughly independent of the numberprocessors used for a �xed discretization scheme. This fact allows for the scalable performance ofthe BlockSolve95 package [11]. The trade-o� for this scalability is that these multicolor orderingsmay not be the optimal orderings to choose for minimizing the number of iterations required forthe iterative solver; the convergence of the iterative solver with respect to di�erent orderings ishighly problem dependent. However, the combination of coloring a general symmetric sparsematrix and the incomplete Cholesky algorithm has proved to be successful for solving large5



Figure 1: A subgraph generated by a two-dimensional, bilinear �nite-element modelwith three degrees of freedom per discretization point. The geometric partition shownby the dotted lines yields an assignment of the vertices in the enclosed subregion toone processor. The upper right �gure shows one possible decomposition of the graphinto local cliques, and the lower �gure shows the corresponding clique (or supernode)graph.problems on scalable parallel architectures [7]. In [6] we address the issue of convergence of thiscombination of algorithms for the model problem.2.3 Communication E�ciencyThe computational kernel of the BlockSolve95 package is the solution of triangular matrixsystems and triangular matrix multiplication. Triangular matrices of the same structure aresolved and multiplied in parallel many times in the use of one of the iterative solvers. Thekey observation is that the required interprocessor communication in triangular system solveor multiply is the same every time; the only di�erence is in the 
oating-point values that aresent and received.To take advantage of this repeated communication pattern, the BlockSolve95 routines inBMcomp msg() are used to build reusable data structures. During each communication phaseeach processor needs to send and receive data from some subset of the processors (a smallsubset, if the partitioning is good). Each message to be sent is an array of 
oating-point valuesand an array of integer values (matrix indices). A key observation is that these integer valuesdo not change; only the 
oating-point values change.6



Prior to any triangular matrix solution and multiplication, each processor declares (viafunction calls in BMcomp msg()) the messages that it will be sending and receiving and speci�esthe integer index values associated with these messages. The routines in BMcomp msg() builddata structures by assembling the declarations from each processor. In addition, the integerindex values associated with the messages are sent to the appropriate processor and storedthere; these values will not be sent in the future. Since the size of the required messages is nowknown, message bu�ers can be preallocated.We currently perform no special communication pattern optimizations in BMcomp msg()although these routines have been set up for this possibility. The optimizations currentlyperformed are1. presending of integer values;2. preallocation of message bu�ers, allowing \forced" messages; MPI Irsend(), to be used;and3. no requests are made between processors for non-local data (processors use local infor-mation to know what messages to expect and what to send).For an example of the message setup process, see the routine BSsetup forward(). For anexample of how the message data structures are used, see the routine BSforward().
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3 The BlockSolve95 Computing EnvironmentIn this section we describe the BlockSolve95 computing environment. BlockSolve95 has aninitialization routine that must be called prior to any other BlockSolve95 routine and a �nal-ization routine that must be called last. We also introduce the most important BlockSolve95data structure|BSprocinfo|the BlockSolve95 context. All information about the parallelenvironment, preconditioner options, and settings for the iterative solvers is communicated tothe BlockSolve95 package through the BSprocinfo context data structure.3.1 Initializing and Finalizing the BlockSolve95 EnvironmentThe �rst call to a BlockSolve95 routine must be the initialization routine BSinit(). Thede�nition and arguments for this routine are as follows.int BSinit(int *argc, char ***args);The arguments argc and argv should be the command line arguments as delivered in all Cand C++ programs. If you have not already done so, this routine initializes MPI with a callto MPI Init() and initializes any logging routines that have been speci�ed (see x6 for moreinformation on logging within BlockSolve95).The �nal call to a BlockSolve95 routine must be the routine BSfinalize().int BSfinalize();This routine calls MPI Finalize() if BlockSolve95 initialized MPI.3.2 The BlockSolve95 Context BSprocinfoThe BlockSolve95 context data structure, typedef BSprocinfo, contains all the informationabout the parallel environment, options for computing the preconditioner, and settings for theiterative solver. Before calling any BlockSolve95 routines, the user must �rst allocate a contextof data type BSprocinfo for BlockSolve95 using the routine BScreate ctx().BSprocinfo *BScreate_ctx();After the last BlockSolve95 routine has been called, the context should be freed by calling theroutine BSfree ctx().void BSfree_ctx(BSprocinfo *context);After the call to BScreate ctx(), you can then call one of many routines to modify the context.We provide default settings for the context that we think will, in general, provide the bestperformance, but you may bene�t from changing some of the settings.The context options can be broken into three broad categories: (1) the parallel environment,(2) options concerning the computation of preconditioners, and (3) settings for calls to aniterative solver. In the following three subsections we describe the possible options and givethe routine names that modify the context.3.2.1 Parallel Environment OptionsThe following options concern the general parallel environment in which BlockSolve95 operates.The settings and routines for changing them are as follows:8



� Processor Set: De�nition of the processors that are participating in this call to Block-Solve95. If the number of processors participating is equal to the number of processorsthat are allocated to the user (this is the default case), this value should be set toMPI COMM WORLD. If, for example, you wish to work on di�erent matrices on di�erent setsof processors at the same time and perhaps later combine the answers, you must set theprocset parameter accordingly. The program example grid2 solves two linear systemssimultaneously on a partitioned set of processors. The default setting for this parameteris MPI COMM WORLD. To reset the value, call the routine BSctx set ps().void BSctx_set_ps(BSprocinfo *context,ProcSet *ps);Youmaywish to set the processor set to a duplicate communicator (using MPI Comm dup())to ensure that there are no message con
icts.� Processor id: The id number of this processor. The default setting is given by theroutine MPI Comm rank(). To reset the value, call the routine BSctx set id().void BSctx_set_id(BSprocinfo *context,int id);� Number of processors: The number of processors that are calling BlockSolve95 witha portion of the matrix. The default setting is given by the routine MPI Comm size().To reset the value, call the routine BSctx set np().void BSctx_set_np(BSprocinfo *context,int np);� Error checking: Simple error checking on the user's matrix structure and on someintermediate data structures. The error checking is not very time consuming and isprobably a good option to use for the �rst few runs. The default setting is FALSE (i.e.,no error checking). To change this value, call the routine BSctx set err().void BSctx_set_err(BSprocinfo *context,int err);� Print information: Print information about the coloring, reordering, and linear systemsolution options. If set to TRUE this information is printed during execution. The defaultsetting is FALSE. To change this value, call the routine BSctx set pr().void BSctx_set_pr(BSprocinfo *context,int pr);� Print logging information: Print logging informationwhen the routine BSprint log()is called. If set to TRUE this information is printed, the default setting is FALSE. To changethis value, call the routine BSctx set print log().void BSctx_set_print_log(BSprocinfo *context,int print);� Print current context options: The current context options. To print informationon how the context is currently set, call the function BSctx print().void BSctx_print(BSprocinfo *context);3.2.2 Factorization OptionsThe following options concern the computation of incomplete factorizations by BlockSolve95.Calls to these routines must be made prior to calling BSmain perm(). The settings and routinesfor changing them are as follows: 9



� Maximum clique size: The maximumnumber of rows in a single clique. You may wishto limit this value if the cliques become too large and performance is impaired (an unlikelycase in most applications and something that requires understanding the algorithms inBlockSolve95). The default setting is INT MAX, which is de�ned in the system include �lelimits.h. To change this value, call the routine BSctx set cs().void BSctx_set_cs(BSprocinfo *context,int cs);� Maximum identical node size: The maximum number of rows combined into anidentical node. You may wish to limit this value if the i-nodes become too large andperformance is impaired (an unlikely case in most applications and something that re-quires understanding the algorithms in BlockSolve95). The default setting is INT MAX.To change this value, call the routine BSctx set is().void BSctx_set_is(BSprocinfo *context,int is);� Type of local coloring: The type of local coloring heuristic used. There are two phasesin obtaining a coloring of the matrix graph: a global phase in which the Jones/Plassmannalgorithm is used and a local phase where either an incident degree ordering (IDO)coloring or a saturated degree ordering (SDO) coloring is used. In general, the SDOcolorings are slightly better but take more time to �nd. The default setting is IDO. Tochange this value, call the routine BSctx set ct().void BSctx_set_ct(BSprocinfo *context,int ct);� Retain data structures: Information retained during the reordering process. Theinformation saved (if the 
ag is set to TRUE) allows a fast reordering if a matrix withthe same structure is to be reordered later. The default setting is FALSE. To change thisvalue, call the routine BSctx set rt().void BSctx_set_rt(BSprocinfo *context,int rt);� No clique/i-node reordering: No attempt to �nd cliques or i-nodes. This 
ag shouldbe set to TRUE (i.e., no search for i-nodes or cliques will be made) when you know that thei-node or clique sizes will be 1 or very close to 1 (you may wish to experiment with this).The default setting is FALSE. To change this value, call the routine BSctx set si().void BSctx_set_si(BSprocinfo *context,int si);� Scale linear system: Scaling of the linear system. The default setting is TRUE. Tochange this value, BSctx set scaling() may be called.void BSctx_set_scaling(BSprocinfo *context,int scale);Note that if this function is set, the routine BSscale diag() must be called to do thescaling. We recommend using the matrix diagonal for scaling so that the absolute valueof the diagonal of the scaled system is set to one.10



3.2.3 Solver OptionsThe following options concern the solution of linear systems by BlockSolve95. Calls to theseroutines must be made prior to calling BSpar solve() or BSpar isolve(). The settings androutines for changing them are as follows:� Maximum number of iterations: The maximum number of iterations allowed theiterative solver. The default setting is 100. To change this value, call the routineBSctx set max it().void BSctx_set_max_it(BSprocinfo *context,int max_it)� GMRES restart value: The maximumnumber of vectors allowedGMRES before restart-ing. The default setting is 20. To change this value, call the routine BSctx set restart().void BSctx_set_restart(BSprocinfo *context,int restart);� Initial guess for iterative method: The initial vector used by the iterative method.If this 
ag is TRUE, the initial guess is the zero vector. If FALSE, the iterative method usesthe vector passed to it. This option is useful if a good estimate of the solution is available.The default setting is TRUE. To change this value, call the routine BSctx set guess().void BSctx_set_guess(BSprocinfo *context,int guess);� Convergence tolerance: The relative residual tolerance requested from the itera-tive solver. The default setting is 1.0e-5. To change this value, call the routineBSctx set tol().void BSctx_set_tol(BSprocinfo *context,FLOAT tol);If the linear system being solved is Ax = b, the relative residual is kAx� bk=kbk.� Number of RHS vectors: The number of right-hand side (RHS) vectors to be inputto the linear solver. The iterative solvers in BlockSolve95 can solve for multiple RHSsimultaneously. The default setting is 1. This routine should not have to be called by theuser because it is set to the correct value if the routine BSsetup block() is called. Theprogram example grid5 demonstrates how to solve for various numbers of RHS vectors.To change this value, call the routine BSctx set num rhs().void BSctx_set_num_rhs(BSprocinfo *context,int num_rhs);� Preconditioner: The preconditioner to be used by the iterative solver. The choices areincomplete Cholesky (PRE ICC), incomplete LU (PRE ILU), SSOR (PRE SSOR), or blockJacobi (PRE JACOBI). The default setting is PRE ICC. Note that the preconditioner spec-i�ed must agree with the preconditioner computed. For example, if PRE ICC is speci�edbut an ILU preconditioner is passed to the solver, a BlockSolve95 error will be returned.To change this value, call the routine BSctx set pre().void BSctx_set_pre(BSprocinfo *context,int pre);� Iterative method: The iterative method to be used. The choices are conjugate gradi-ents (CG), GMRES (GMRES), or SYMMLQ (SYMMLQ). The default setting is CG. To changethis value, call the routine BSctx set method().void BSctx_set_method(BSprocinfo *context,int method);11



4 The User Matrix Data Structure BSspmatTo pass your matrix to BlockSolve95, you must use the matrix data structure typedef BSspmat.Given this data structure, BlockSolve95 will convert the matrix to a BlockSolve95 internal datastructure of typedef BSpar mat in the routine BSmain perm() (we discuss this routine in detailin x5). In this section we describe two approaches for converting sparse matrix data into theBSspmat format. The �rst, using the routine BSeasy A(), is recommended and should befairly painless starting with most standard sparse matrix storage schemes. The second, directlyinserting the data and mappings into the structure BSspmat, allows for greater 
exibility butis more complicated.4.1 The Easy Way to Convert Your Data to BSspmatWe recommend that you use, if possible, the routine BSeasy A() to generate the BSspmat datastructure. The following are the essential data that you must specify for BSeasy A().� The matrix rows must be partitioned onto processors such that each processor has atleast one row, each row has a unique global number, and each row is assigned to a uniqueprocessor.� The global row numbers assigned to each processor must be contiguous.4 If processor pis assigned np rows, and the rows numbers start at ip, the rows assigned to processor pmust be ip; ip + 1; : : : ; ip + np � 1. For example, if there are two processors, processor 0could have rows 0; 1; 2 and processor 1 could have rows 4; 5; 6 but not rows 4; 6; 7. Notethat the global row numbering can skip numbers; in the above example we did not usethe row value 3.� The nonzero structure and matrix values for the rows assigned to each processor mustbe given in the three arrays rp, cval, and aval. The storage format for these arrayscorresponds to the standard compressed row storage (CRS) scheme for sparse matrices.See pages 58{69 of [2] for a detailed discussion of various sparse storage schemes. Eachprocessor uses the local numbering of its rows 0; 1; : : : ; np � 1 to index these arrays. The�rst array rp is an index of pointers into the two other arrays indicating where the globalcolumn numbers and nonzero values for each row begins. Thus, the ith row has nonzerosin columns cval[rp[i]], cval[rp[i]+1],...,cval[rp[i+1]-1]. The nonzero valuesare given in corresponding locations in the array aval. The column values for each rowin the array cval must be sorted from lowest to highest. Note that the entire matrix rowmust be represented in these arrays even if the matrix is symmetric.Given this data, the routine BSeasy A() can be called by each processor to generate thetypedef BSspmat data structure. The function arguments for BSeasy A() are as follows.BSspmat *BSeasy_A(int start_num,int n,int *rp,int *cval,FLOAT *aval,BSprocinfo *procinfo);Note that start num is the starting global row number (ip in the above example), and n is thenumber of rows assigned the processor (np in the above example).To illustrate the information BSeasy A() requires, we consider the following 4 � 4 matrix:A = 0BB@ a b 0 0c d e 00 f g h0 0 i j 1CCA : (1)4This limitation applies only to BSeasy A(). BlockSolve95 itself does not require that row numbersbe contiguous; an arbitrary row mapping can be used.12



Let the global numbering of the rows and columns of the matrix be 0 to 3 (e.g., A12 = e).Suppose that we have two processors, 0 and 1, and that we assign rows 0 and 1 of the matrix toprocessor 0 and rows 2 and 3 to processor 1. Given this distribution of the rows of the matrixand the global numbering of the columns, we would have the arrays rp, cval, and aval asshown in Figure 2. When processor p calls BSeasy A(), its value of start num would be givenby ip and its value of n would be np.
0

n  = 2 i  = 
0

0

processor 0

rp

cval

aval

0 1 0 1 2

0 2 5

ba c d e

rp

cval

aval

0 53

1 2 3 2 3

f g h i j
0

n  = 2 i  = 
0

2

processor 1Figure 2: The values of the arrays rp, cval, and aval for the matrix given in equation 1.The matrix is partitioned so that processor 0 is assigned rows 0 and 1 and processor 1has rows 2 and 3. Note that indexing of the arrays and the matrices rows and columnsbegins with 0.4.2 The Advanced Way to Convert Matrix Data to BSspmatYou can also allocate the BSspmat without using BSeasy A(). Although this approach requiresa bit more work, it can be more 
exible. For example, we had no di�culty in writing a Cinterface routine to take a matrix written in a standard sequential format by a Fortran codeand put this structure around it without duplicating the data in the Fortran sparse matrix.Within the BSspmat data structure, each row of the matrix is represented by the structuretypedef BSsprow. The data structures are speci�ed as follows:typedef struct __BSsprow {int diag_ind; /* index of diagonal in row */int length; /* num. of nz in row */int *col; /* col numbers */double *nz; /* nz values */} BSsprow;typedef struct __BSspmat {int num_rows; /* number of local rows */int global_num_rows;/* number of global rows */int symmetric; /* if TRUE, the matrix should be symmetric */int icc_storage; /* if TRUE, storage scheme used for ICC preconditioner *//* if FALSE, ILU storage scheme used */BSmapping *map; /* mapping from local to global, etc */13



BSsprow **rows; /* the sparse rows */} BSspmat;First, we discuss the structure BSspmat. The �eld num rows contains the number of rowslocal to the processor. The �eld global num rows contains the total number of rows in thelinear system. The �elds symmetric and icc storage respectively indicate whether the matrixis symmetric and whether an incomplete Cholesky factorization will be computed. The �eldmap contains mapping information that will be discussed later. The �eld rows is an array ofpointers to local rows of the sparse matrix.In the structure BSsprow, the �eld diag ind is the index of the diagonal in this row. Werequire that every row have a diagonal element (the value of this element could be zero). The�eld length contains the number of nonzero values in this row. The �eld col is a pointer toan array of integer values that represent the column number of each nonzero value in the row.These column numbers must be sorted in ascending order. The �eld nz is a pointer to an arrayof double-precision values that are the nonzero values in the row.The mapping structure serves three purposes: (1) the mapping of local row number toglobal row numbers, (2) the mapping of global row numbers to local row numbers, and (3) themapping of global row number to processor number. We provide routines for you to set upand perform this mapping (details on these routines are given in the \man" pages). You may,however, set up your own mapping and use your own routines through this data structure. Thelocal row numbers on every processor run from 0 to num rows - 1; the global row numbers runfrom 0 to global num rows - 1. Each local row has a corresponding global row number.typedef struct __BSmapping {void *vlocal2global; /* data for mapping local to global */void (*flocal2global)(); /* a function for mapping local to global */void (*free_l2g)(); /* a function for free'ing the l2g data */void *vglobal2local; /* data for mapping global to local */void (*fglobal2local)(); /* a function mapping global to local */void (*free_g2l)(); /* a function for free'ing the g2l data */void *vglobal2proc; /* data for mapping global to proc */void (*fglobal2proc)(); /* a function mapping global to proc */void (*free_g2p)(); /* a function for free'ing the g2p data */} BSmapping;The �eld vlocal2global is a pointer to data that is passed into the local to global mappingfunction (if you are doing the mapping, you can make this point to whatever you wish). The�eld flocal2global is a pointer to a function for performing the local to global mapping. The�eld free l2g is a pointer to a function for freeing the data in the �eld vlocal2global. Thefunction for performing the local to global mapping takes �ve arguments.int length; /* the number of row numbers to translate */int *req_array; /* the array of local row numbers to translate */int *ans_array; /* the array of corresponding global row numbers */BSprocinfo *procinfo; /* the processor information context */BSmapping *map; /* the mapping data structure */The next three �elds (vglobal2local, fglobal2local, and free g2l) are exactly the sameexcept the mapping is from global to local row number. The mapping is performed only forrows that are local to the processor; if the mapping is attempted for a nonlocal global rownumber, a value of -1 is placed in the ans array. The arguments to the mapping function areas follows. 14



int length; /* the number of row numbers to translate */int *req_array; /* the array of global row numbers to translate */int *ans_array; /* the array of corresponding local row numbers */BSprocinfo *procinfo; /* the processor information context */BSmapping *map; /* the mapping data structure */The last three �elds (vglobal2proc, fglobal2proc, and free g2p) are exactly the sameexcept the mapping is from global row number to processor number.5 The arguments to themapping function are as follows.int length; /* the number of row numbers to translate */int *req_array; /* the array of global row numbers to translate */int *ans_array; /* the array of corresponding processor numbers */BSprocinfo *procinfo; /* the processor information context */BSmapping *map; /* the mapping data structure */

5This routine will be called by a processor for only those global row numbers that are local to thatprocessor or for those global row numbers that are connected in the sparse matrix to rows that arelocal to that processor. 15



5 Manipulating and Solving Sparse SystemsThis section is divided into two parts. First, we describe how to set up the matrix and pre-conditioner for parallel solution. Second, we describe how to solve the linear systems after thissetup has taken place.5.1 Manipulation and SetupThe data structure that BlockSolve95 uses to represent sparse matrices is typedef BSpar mat.The routine that converts the user's data structure BSspmat to BSpar mat is BSmain perm().This routine is called as follows.BSpar_mat *BSmain_perm(BSprocinfo *procinfo,BSspmat *A);This routine colors and permutes the sparse matrix to create a new version of the sparsematrix appropriate for parallel computation. A large number of options are available that areset through the context variable procinfo, as described in x3. The user's sparse matrix is notchanged permanently by this routine, but may be manipulated and restored during execution.5.1.1 Symmetric and Nonsymmetric MatricesBlockSolve95 has two versions of its internal data structure based on whether (1) the matrixnonzeros are symmetric and an incomplete Cholesky factor is to be computed, or (2) the matrixnonzeros are to be treated as if they are nonsymmetric (even if the matrix values are actuallysymmetric) and an incomplete ILU factor is to be computed.The routine BSset mat icc storage() must be called before BSmain perm() to informBlockSolve95 whether internal incomplete Cholesky storage or the incomplete LU storage is tobe used. The calling sequence isvoid BSset_mat_icc_storage(BSspmat *A,int storage);where the incomplete Cholesky storage will be used if storage is TRUE, and the incomplete LUotherwise. Note that if the matrix is nonsymmetric and yet the incomplete Cholesky storage isspeci�ed, incorrect results will be obtained. BlockSolve95 assumes that the matrix is symmetricif the incomplete Cholesky option is used to minimize the required storage.The routine BSset mat symmetric() must be called to inform BlockSolve95 whether thematrix is symmetric (even if you use the nonsymmetric ILU internal storage format). Thearguments to this routine arevoid BSset_mat_symmetric(BSspmat *A,int sym);where sym is TRUE if the matrix is symmetric and FALSE if the matrix is nonsymmetric.In Table 3 we summarize the possible combination of options for the two functionsBSset mat icc storage() and BSset mat symmetric(). The tricky choice is whether to useILU for a symmetric matrix. If the system is very inde�nite, you may be forced to this approachto be able to compute an incomplete factor without breakdown. However, remember that thisapproach requires essentially twice the storage of using the incomplete Cholesky option.5.1.2 Fast Reorderings for Di�erent Matrix Nonzero ValuesOften you may wish to solve more than one linear system with the same nonzero structure butdi�erent nonzero values. In this case the context should be set to \retain" important interme-diate data structures by using the function BSctx set rt() described in x3. If BSmain perm()16



Table 3: Consequences of choosing incomplete Cholesky or incomplete LU for symmet-ric or nonsymmetric matricesBSset mat symmetric() BSset mat icc storage() ConsequencesPositive de�niteTRUE TRUE preconditionerILU computed, twice the storageTRUE FALSE of incomplete CholeskyIncorrectFALSE TRUE resultsILU computed, onlyFALSE FALSE correct choicehas already been called with the \retain" parameter set to true, you can call BSmain reperm()to permute a matrix with the same structure. The routine BSmain reperm() is called with thefollowing arguments.void BSmain_reperm(BSprocinfo *procinfo,BSspmat *A,BSpar_mat *pA);5.1.3 Diagonal Scaling of the Linear SystemAfter calling BSmain perm(), the matrix then can be scaled diagonally by calling BSscale diag().The function arguments are the following.void BSscale_diag(BSpar_mat *A,FLOAT *sc_diag,BSprocinfo *procinfo);Once the matrix has been scaled, BlockSolve95 automatically solves the scaled system(D�1AD�1)(Dx) = (D�1b) ; (2)where D is the diagonal matrix whose values are the square root of the absolute value of thevector sc diag (usually chosen as the diagonal of A). Thus, if the unscaled matrix has anegative diagonal entry, it will be �1 after scaling.5.1.4 The Communication Data Structure BScommPrior to either factoring or solving the matrix, the communicationpatterns used by BlockSolve95must be created. For the factorization phase, this pattern is compiled by calling the routineBSsetup factor().BScomm *BSsetup_factor(BSpar_mat *A,BSprocinfo *procinfo);For matrix solution, it is compiled by calling BSsetup forward().BScomm *BSsetup_forward(BSpar_mat *A,BSprocinfo *procinfo);Both routines return a communication pattern of typedef BScomm. The communication pat-terns may be freed by calling BSfree comm().void BSfree_comm(BScomm *comm_ptr); 17



5.1.5 Computing an Incomplete FactorizationIf an incomplete factor is to be computed, a copy of the matrix must be made by using theroutine BScopy par mat().BSpar_mat *BScopy_par_mat(BSpar_mat *A);The copy is necessary because the iterative solver will require both the initial matrix and thefactorization. As an aside, we note that (for the incomplete Cholesky storage scheme) the copyof the sparse matrix shares the clique storage space with the matrix from which it is copied.For more information see the man page on BScopy par mat().The incomplete factorization is computed by calling the routine BSfactor().int BSfactor(BSpar_mat *A,BScomm *comm,BSprocinfo *procinfo);The matrix A will be overwritten with the incomplete factorization. If the factorization issuccessful the routine returns 0; otherwise a negative integer is returned whose absolute valueis the row number of the color (less one) where the failure occurred. Note that the kind offactorization computed is determined by the internal representation of the matrix produced byBSmain perm(). For example, consider the following code segment.BSset_mat_symmetric(A,TRUE);BSset_mat_icc_storage(A,FALSE);pA = BSmain_perm(procinfo,A); CHKERR(0);/* diagonally scale the matrix */BSscale_diag(pA,pA->diag,procinfo); CHKERR(0);/* set up the communication structure for triangular matrix solution */Acomm = BSsetup_forward(pA,procinfo); CHKERR(0);/* get a copy of the sparse matrix */f_pA = BScopy_par_mat(pA); CHKERR(0);/* set up a communication structure for factorization */f_comm = BSsetup_factor(f_pA,procinfo); CHKERR(0);/* compute the incomplete LU factorization */ierr = BSfactor(f_pA,f_comm,procinfo);In this example the call to BSset mat symmetric() speci�es the matrix as being symmetric.The internal storage format for the incomplete LU factorization is chosen prior to the call toBSmain perm() by calling the routine BSset mat icc storage(). Thus, the call to BSfactor()will compute the incomplete LU factorization rather than the incomplete Cholesky factorizationeven though the matrix is speci�ed as symmetric. Also, note that the matrix has been diagonallyscaled before the factorization with the call to BSscale diag().5.1.6 What to Do If the Factorization FailsAn attempt to compute the incomplete Cholesky factorization of a positive de�nite matrix canfail if a zero or negative diagonal is encountered during the factorization. We note that theincomplete factorization has been shown to exist only if the matrix is diagonally dominant orin several other special cases; in general, there is no guarantee that it will exist. In the case offailure the matrix must be recopied and the factorization retried. We recommend diagonallyscaling the matrix and using the following loop to accomplish this task.my_alpha = 1.0;/* get a copy of the sparse matrix */18



f_pA = BScopy_par_mat(pA);/* factor the matrix until successful */while (BSfactor(f_pA,f_comm,procinfo) != 0) {/* recopy just the nonzero values */BScopy_nz(pA,f_pA);/* increment the diagonal shift */my_alpha += 0.1;BSset_diag(f_pA,my_alpha,procinfo);}In this code segment, we are shifting the diagonal of the matrix by 0.1 every time thefactorization fails. Other strategies are certainly possible and could easily be implemented bythe user. The routine BSset diag() is used to change the entire diagonal to my alpha.void BSset_diag(BSpar_mat *A,FLOAT my_alpha,BSprocinfo *procinfo);5.2 Solving the Linear SystemOnce the parallel matrix and the communication structures have been created, we are ready tosolve the sparse linear system. One of two routines can be called to do this: (1) BSpar solve(),for either symmetric or nonsymmetric linear systems; and (2) BSpar isolve(), for symmetricinde�nite systems, especially those involved in \shift and invert" strategies.BSpar solve() can be used repeatedly to solve systems of linear equations with one or withmultiple right-hand sides. The calling arguments are as follows.int BSpar_solve(BSpar_mat *A, BSpar_mat *fact_A, BScomm *comm_A,FLOAT *rhs, FLOAT *x, FLOAT *residual, BSprocinfo *procinfo);The routine returns the number of iterations taken by the solver. If the solver fails (for example,a negative curvature direction is found in a conjugate gradient iteration), the solver returns thenegative of the iteration number.The following code segment presents an example of how BSpar solve() could be called.BSctx_set_method(procinfo,GMRES);BSctx_set_pre(procinfo,PRE_ILU);BSctx_set_max_it(procinfo,50);BSctx_set_restart(procinfo,25);BSctx_set_guess(procinfo,TRUE);BSctx_set_tol(procinfo,1.0e-7);num_iter = BSpar_solve(pA,f_pA,Acomm,rhs,x,residual,procinfo); CHKERR();In this example the GMRES iterative method has been speci�ed, preconditioned by anincomplete LU factorization. The preconditioner speci�ed must agree with the preconditionerthat has been computed by BSfactor(). The maximumnumber of iterations allowed the solverhas been speci�ed as 50, and the number of storage vector allowed GMRES before restart as25. In this example BSctx set guess() has speci�ed that the solver use an initial guess forx as the zero vector. Finally, the relative residual tolerance, kAx � bk=kbk, has been set to1.0e-7. Additional details on the arguments used can be found in the man page.A second solver, BSpar isolve(), is set up to solve the shifted system (A � �B)x = b,where A and B are symmetric matrices, � is a real constant, x is the solution vector, and bis the right-hand side. BlockSolve95 is set up to take advantage of B being NULL or � beingzero. The calling sequence is the following. 19



int BSpar_isolve(BSpar_mat *A, BSpar_mat *fact_A, BScomm *comm_A,BSpar_mat *B, BScomm *comm_B, FLOAT *in_rhs, FLOAT *out_x,FLOAT shift, FLOAT *residual, BSprocinfo *procinfo);BSpar isolve() uses the SYMMLQ algorithm, which requires that the preconditioner, ifany, be positive de�nite. Symmetric diagonal scaling is not possible for an inde�nite matrix,so one of the other preconditioners must be used. The restriction that the preconditionerbe positive de�nite is too restrictive for many problems, but we know of no general-purposealternative to SYMMLQ that takes advantage of symmetry while allowing an inde�nite precon-ditioner. Another option would be to explicitly form (A � �B) and solve the resulting systemwith GMRES preconditioned with ILU (at the expense of twice the memory). The programexamples grid7 and grid8 compare these two options. See x8 for details.If you wish simultaneously to solve for more than one right-hand side, you must call theroutine BSsetup block() to modify the communication structure to accommodate the multipleright-hand sides. The arguments for this function are the following.void BSsetup_block(BSpar_mat *A,BScomm *comm,int block_size,BSprocinfo *procinfo);5.3 Freeing MatricesTo free the parallel matrix created by BSmain perm(), call the routine BSfree par mat().void BSfree_par_mat(BSpar_mat *A);To free a copy of a parallel matrix created by BScopy par mat(), call the routineBSfree copy par mat().void BSfree_copy_par_mat(BSpar_mat *A);

20



6 Error Checking, Flop Counting, Message Passing, andthe BLASIn this section we discuss a number of useful, miscellaneous features available in BlockSolve95.These features include error checking, 
op counting, matrix size and ordering information,message-passing options, and BLAS options for optimizing processor performance.6.1 Error Checking within BlockSolve95BlockSolve95 uses an error-checking system based on the two macros SETERR() and CHKERR(),which are de�ned in the �le include/BSdepend.h. When BlockSolve95 is compiled with the
ag DEBUG ALL de�ned in the �le include/BSdepend.h, then when an internal error occurs(such as a failed malloc() call), BlockSolve95 returns to the user, and the error code can bechecked and a traceback returned. The traceback includes the routine names and line numberswhere the error occurs; this information can be useful if you suspect an error in BlockSolve95.We highly recommend the use of DEBUG ALL until you are extremely sure of your code; eventhen, it is inexpensive to use DEBUG ALL with BlockSolve95. The default is that DEBUG ALL isset to TRUE in include/BSdepend.h.6.2 Flop CountingWhen the BlockSolve95 is compiled with MLOG de�ned, 
ops (
oating-point operations) arebeing logged. (See x7 for more information about compile-time options.) You can access thecurrent number of 
ops executed by BlockSolve95 on a particular processor with the call to thefunctiondouble BSlocal_flops();which returns a double. The total number of 
ops performed on all processors can be obtainedby calling the functiondouble BSglobal_flops(BSprocinfo *procinfo);which also returns a double.The following code segment demonstrates how you can estimate 
op rates for a section ofcode.init_flops = BSglobal_flops(procinfo);init_time = MPI_Wtime();num_iter = BSpar_solve(pA,f_pA,Acomm,rhs,x,residual,procinfo); CHKERR(0);total_time = MPI_Wtime() - init_time;total_flops = BSglobal_flops(procinfo) - init_flops;tmflop = total_flops/(total_time);In this case, tmflop would be an estimate of the combined 
op rate for all the processorsinvolved in the call to BSpar solve().BlockSolve95 also does some rudimentary logging of timing and 
op counts of routineswithin the package when compiled with MLOG de�ned. By calling the functionint BSprint_log(BSprocinfo *procinfo);before the �nal call to BSfree ctx(), this logging information can be printed out.21



6.3 Matrix StatisticsBlockSolve95 includes a number of functions that can be called to obtain information abouta matrix of typedef BSpar mat. For example, the following two functions may be called todetermine the matrix nonzeros locally assigned to a processor and the total (global) number ofnonzeros in the matrix.int BSlocal_nnz(BSpar_mat *);int BSglobal_nnz(BSpar_mat *,BSprocinfo *);The following two functions may be called to obtain the number of i-nodes locally assigned toa processor and the global number of i-nodes.int BSlocal_num_inodes(BSpar_mat *);int BSglobal_num_inodes(BSpar_mat *);The following two functions return the the number of cliques locally assigned to a processorand the global number of cliques.int BSlocal_num_cliques(BSpar_mat *);int BSglobal_num_cliques(BSpar_mat *);The following function returns the number of colors used to color the graph associated withmatrix clique structure.int BSnum_colors(BSpar_mat *);6.4 Blocking and Nonblocking MessagesBlockSolve95 can be compiled so that it does not use blocking (synchronous) sends and receives.(In MPI the blocking send is the function MPI Send(); the nonblocking (asynchronous) send isthe function MPI Isend().) The MPI standard does not require that two processors simulta-neously issuing blocking sends bu�er messages and return; therefore deadlock can result. Thisproblem can be avoided by using nonblocking sends, at the expense of more memory (becausethe message bu�ers cannot be freed until it is certain that the messages have been received).The IBM SP requires the use of such nonblocking sends.BlockSolve95 compiles with the blocking or nonblocking send versions based on whetherNO BLOCKING SEND is de�ned in the include �le include/BSdepend.h. If you are concernedabout performance or memory usage, you should experiment with the di�erence between block-ing and nonblocking sends on your particular architecture.6.5 MPI Communicators and Message Number Con
ictsBlockSolve95 currently does not make a copy of the user's MPI communicator; instead it usesas a default the current MPI COMM WORLD. If there is any possibility of a message-passing con
ict(for example, unsatis�ed wild card receives from the user's code), the communicator can becopied by using MPI Comm dup() and can be handed to BlockSolve95 by using BSctx set ps().BlockSolve95 uses message numbers beginning at 10,000. It uses a signi�cant but variablenumber of messages after that. Currently the number of messages used is 20+(10000*num-ber of processors). The number of messages needed by BlockSolve95 depends on the problembeing solved, but if the number of messages allocated to it is too small, it will detect an er-ror and return accordingly (if DEBUG ALL is on). The current setting of 10,000 is generous.The message numbers as well as the number of messages can be changed simply by alter-ing include/BSprivate.h. The avoidance of con
icts in the use of message numbers can beensured by copying the communicator as described above.22



6.6 Inline Macros for the BLASThe performance of the vendor-supplied BLAS for small systems can be disappointing becauseof the subroutine call overhead, error checking, and special case handling (overloading) in theimplementation of these BLAS. In addition, BlockSolve95 has to gather and scatter noncontigu-ous vector data (although not matrix data) to use the dense BLAS. A feature in BlockSolve95is special handling of the Level-2 BLAS for small i-node sizes; BlockSolve95 uses macros toput code inline for the special BLAS cases required. The performance improvement can besubstantial. For example, in Table 4 we show the processor performance improvement obtainedon the Argonne IBM SP system (RS/6000-370 processor).Table 4: Comparison of the single-processor performance of BlockSolve95 conjugategradient and GMRES iterations, with vendor-supplied, Level-2 BLAS (GEMV andTRMV) and the new inline macros. The symmetric systems are solved with the con-jugate gradient method; the nonsymmetric systems are solved with GMRES.Size of Symmetric Vendor BLAS BS95 Macros Improvementi-node (Y or N) (M
ops) (M
ops) Ratio2 Y 3.5 8.3 2.353 Y 6.1 12.5 2.065 Y 10.3 18.3 1.776 Y 14.7 22.3 1.527 Y 17.6 23.2 1.322 N 5.2 7.1 1.373 N 8.0 10.6 1.335 N 16.1 19.1 1.19These macros are de�ned in the include/BSmy blas.h. The default is that libraries arecompiled with the inline versions for small i-node sizes (less than 10); otherwise, the vendor-supplied BLAS are used. These macros can be turned o� by editing this �le and not de�ningMY BLAS DTRMV ON and MY BLAS DGEMV ON. Also, the maximumlevel of unrolling can be changedto tune performance for a particular architecture.
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7 InstallationUnderneath the main BlockSolve95 directory are six other directories: (1) src, which containsthe source code and make�les for BlockSolve95, (2) doc, which contains the documentation forBlockSolve95, (3) examples, which contains example programs that demonstrate the use ofBlockSolve95, (4) include, (5) lib, and (6) bmake.BlockSolve95 uses the same make�le system as PETSc [1]. The README �le in the maindirectory gives details on how to build the libraries. The make�les will build the BlockSolve95library in a subdirectory of the lib directory based on the machine architecture and the levelof optimization. The machine architecture should be speci�ed by the environmental variable$PETSC ARCH. You will have to modify the �le bmake/$PETSC ARCH/$PETSC ARCH.site as di-rected in the README �le.Several compiler options a�ect BlockSolve95. The DEBUG ALL 
ags were described in x6.The 
ag MLOG is associated with the logging facilities within BlockSolve95, and more informationcan be found on them in the �le include/BSlog.h. A preprocessor variable called BSDOUBLEis de�ned in include/BSsparse.h. If BSDOUBLE is de�ned, BlockSolve95 will compile a double-precision version; otherwise, a single-precision version is compiled. Unfortunately, the routinenames for both versions are the same.There is special case on the Cray T3D because the C code requires that FLOAT be de�ned asdouble but the BLAS and LAPACK routines require the single-precision names (although theyare the double-precision versions). Details can be found in the include �le include/BSsparse.h.7.1 Other LibrariesTo run BlockSolve95, you need LAPACK; the BLAS 1, 2, and 3 libraries; and an MPI imple-mentation for the particular architecture being used. If MPI has not been installed on yoursystem, we recommend your using MPICH. This package is available via anonymous ftp frominfo.mcs.anl.gov in the directory pub/mpi. More information on MPI can be found on theWWW at http://www.mcs.anl.gov/mpi/index.html.7.2 UNIX man PagesUNIX man pages have been generated for the BlockSolve95 routines and are locatedin the directory doc/man. To use these pages you must include the path to the directoryBlockSolve95/doc/man in your MANPATH environmental variable. This variable can be setwith the command setenv. The tool xman provides a nice interface to these man pages. TheBlockSolve95 routines can be accessed in Section 3 and the include �les in Section h from thepull-down menu given by the \Sections" button on the xman toolbar.7.3 Availability of BlockSolve95The BlockSolve95 package can obtained via anonymous ftp from info.mcs.anl.gov. The pack-age is in the directory pub/BlockSolve95. In addition, BlockSolve95 is available from netlib.The current version number and last date of modi�cation are in the �le include/BSsparse.h.Please send any questions via e-mail to jones@cs.utk.edu or plassman@mcs.anl.gov. Includeyour name, a�liation, U.S.-mail address, and e-mail address, along with a description of whatyou might be interested in doing with BlockSolve95.Information on the current status of BlockSolve95 can be obtained on the WWW athttp://www.mcs.anl.gov/blocksolve95/index.html.24



7.4 Di�erences between Previous BlockSolve VersionsBlockSolve95 incorporates many improvements over BlockSolve v1.1 and v2.0. Among theseimprovements are the following.� A compile-time option has been added that directs BlockSolve95 to use no blocking sends(see x6 or the include �le include/BSdepend.h for details). This feature is necessarybecause certain machines (e.g., the IBM SP series architecture) have inadequate messagebu�ering space allocated to use blocking sends.� BlockSolve95 now uses the MPI message-passing standard instead of Chameleon for com-munication.� BlockSolve95 can now compute incomplete LU factorizations for matrices that have asymmetric nonzero pattern but nonsymmetric entries. Also, the iterative solver GMREShas been added, which can be used to solve these nonsymmetric systems. See x5 fordetails.� A subroutine, BSeasy A(), has been added that allows the user to convert a sparse matrixstored in a familiar storage format to the BlockSolve95 data structure used for parallelcomputation (see x4 for details). In addition, the routine BSfree easymat() has beenadded to free the data structures that BlockSolve95 allocates when BSeasy A() is called.� The matrix reordering routines called in BSmain perm() have been signi�cantly modi�edto greatly reduce the runtime of BlockSolve95 for problems with only one degree offreedom per grid point. BlockSolve95 is still designed for more complex problems, butthe reordering time for these simpler problems is now more satisfactory.� The code is now ANSI-C. This should result in fewer user errors because of the typechecking that can now be done on argument lists. Note that the user's code does nothave to be ANSI-C to use the libraries.� BlockSolve95 has special macros for handling the level-2 BLAS GEMV and TRMV forsmall i-node sizes. The performance of the vendor-supplied BLAS have proven to beinadequate in this parameter range, so inline versions of speci�c BLAS are now includedin the include �le include/BSmy blas.h.� The set of example programs is greatly expanded and can be used to test most aspectsof BlockSolve95. See x8 for a description of the program examples.
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8 Example ProgramsBlockSolve95 includes a number of example programs that demonstrate most aspects of thesoftware library. The code for these examples is contained in the examples directory.A description of BlockSolve95 example programs, a description ofthe problem calling arguments is given below.================================================================grid0 -- Simple example. Uses 3-d 7-point finite-differencestencil. BlockSolve context set not to look for cliques orinodes. Symmetric problem.. mpirun -np P grid0.ARCH PX PY PZ NX NY NZ-----------------------------------------------------------------grid1 -- An unbalanced grid example. The processors on the leftand right ends of the grid use a 7 pt stencil, those in the middleuse a 27-pt stencil. BlockSolve context set not to look for cliquesand inodes. Symmetric problem.. mpirun -np P grid1.ARCH PX PY PZ NX NY NZ-----------------------------------------------------------------grid2 -- A demonstration of running BlockSolve on two independentsets of processors simultaneously. This problem is partitionedin only the x and y directions. The processors on the leftand right ends of the grid use a 7 pt stencil; those in the middleuse a 27-pt stencil. BlockSolve context set not to look forcliques or inodes. Symmetric problem.. mpirun -np P grid2.ARCH PX PY NX NY NZ-----------------------------------------------------------------grid3 -- A 2-D grid distributed across the processors. The 2-Dgrid is partitioned in both dimensions among the processors.The number of processors *must* be the square of an integer,e.g., 9 but not 8. Either a 5-pt or 9=pt stencil can bespecified. BlockSolve context set not to look for cliques orinodes. Symmetric problem.. mpirun -np P grid3.ARCH NXY NST-----------------------------------------------------------------grid4 -- Simple example (same as grid0) but this code uses lower levelBlockSolve functions to set up the parallel sparse matrix datastructures (done in get_mat4.c). Uses 3-d 7-point finite-differencestencil. BlockSolve context set not to look for cliques or inodes.Symmetric problem.. mpirun -np P grid4.ARCH PX PY PZ NX NY NZ-----------------------------------------------------------------grid5 -- Can be used to test a variety of BlockSolve features.The grid problem is based on the 7-pt stencil; however, onecan specify a number of components at each grid points. Each26



of these components will have an identical nonzero structure(inode) in the sparse matrix. One can specify either a symmetricor nonsymmetric nonzero structure. One can specify whether theBlockSolve is to look for inode/cliques or not.. mpirun -np P grid5.ARCH PX PY PZ NX NY NZ SYM NC IN PRE METHOD SCALE NUM_RHS-----------------------------------------------------------------grid6 -- A demonstration of setting up the BlockSolve communicationstructure and using the same structures to solve multiple linearsystems with the same nonzero structure but different nonzerovalues. In this case, we compute a sequence of preconditionersby varying the diagonal shift applied to the matrix used tocompute in the computation of the incomplete factor.. mpirun -np P grid6.ARCH PX PY PZ NX NY NZ SYM IN NC-----------------------------------------------------------------grid7 -- This example uses SYMMLQ to solve the symmetric shiftedsystem (A-s*B)x = b, where s is a shift and A and B are symmetric.(Note that this system is indefinite for large enough shift s.)Systems of this kind form the core computation in a shiftand invert strategy within a Lanzcos iteration. In the usualcase, A would be the assembled stiffness matrix and B would bethe associated mass matrix. For this example, B has the samenonzero structure of A and its values are the absolute valuesof the values of A. Note that SYMMLQ requires that the preconditioner(the incomplete factorization of A) be positive definite!. mpirun -np P grid7.ARCH PX PY PZ NX NY NZ PRE IN NC BMAT SHIFT-----------------------------------------------------------------grid8 -- This example solves the same problem as that in grid7except here we explicitly form the indefinite matrix C=(A-s*B) andsolve the resulting linear system system, Cx = b, using GMRES.One can use either ILU or ICC as a preconditioner, althoughfor large shifts the diagonal of C must be shifted to avoidbreakdown in the computation of the incomplete Cholesky factor.. mpirun -np P grid8.ARCH PX PY PZ NX NY NZ PRE IN NC SHIFT-----------------------------------------------------------------A description of possible example program arguments:. ARCH = Machine architecture, e.g., sun4, rs6000, IRIX, etc.. P = number of processors. PX = the number of processors in the x direction. PY = the number of processors in the y direction. PZ = the number of processors in the z direction. NX = number of points in the x direction on each processor. NY = number of points in the y direction on each processor. NZ = number of points in the z direction on each processor. NXY = number of points in the x and y directions on each processor. NST = number of points used in the stencil. SYM = 0, use symmetric data structure, = 1, use nonsymmetric. NC = number of components per grid point. IN = 0, do not use, = 1, use inode/clique stuff27



. PRE = 0, use ICC, = 1, use ILU. METHOD = 0, use CG, use GMRES. SCALE = 0, do not scale system, = 1, scale system. NUM_RHS = number of RHSs to solve for simultaneously. BMAT = 0 = use identity for shift, 1 = use positive of A. SHIFT = shift to use in the shift and invert system
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9 Limitations and Future PlansThe user should be aware of a few limitations in BlockSolve95:� Each row of the matrix must have a diagonal entry. That entry may be zero, but it mustbe explicitly represented in the matrix structure.� If the matrix is inde�nite, one cannot solve for a block of vectors simultaneously in thecurrent code.� BlockSolve95 does not check for or catch exceptions associated with 
oating-point errors.� Each processor involved in a BlockSolve call must have at least one row of the matrix.� BlockSolve95 does not allow the user to mix machines with di�erent byte orderings ordi�erent sizes for datatypes in the same computation.Another limitation involves coloring options. It is possible with the current version thatif the portion of the matrix structure contained on some processors is very di�erent from thestructure contained on other processors, then the number of colors on each of these processorscan be quite di�erent. Such a situation could arise if di�erent-order �nite elements are usedon di�erent processors (but would not arise just by applying boundary conditions to someprocessors, but not to others). This imbalance in the number of processors could degradeperformance. A balanced coloring heuristic that addresses this situation is described in [3];however, this heuristic is not yet included in BlockSolve95.
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10 Related SoftwareA number of software packages are closely related to BlockSolve95 and may be of use in par-ticular applications.� The software package PETSc [1] contains an interface to BlockSolve95. It can be usedto access a larger number of iterative solvers, nonlinear methods, and a large numberof other useful features. Information on PETSc may be obtained on the WWW athttp://www.mcs.anl.gov/petsc/petsc.html.� The SUMAA3d (Scalable Unstructured Mesh Algorithms and Applications) project isdeveloping algorithms and software for many of the tasks associated with unstructuredmesh computation. Current informationabout this project can be obtained on the WWWat http://www.mcs.anl.gov/sumaa3d/index.html.� Preliminary adaptive re�nement software has been developed for �nite element methodsin two and three dimensions [12]. This software is part of the SUMAA3d project.
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